

AVR32100: Using the AVR32 USART

Features
• Supports character length from 5 to 9 bits
• Interrupt Generation
• Parity, Framing and Overrun Error Detection
• Programmable Baud Rate Generator
• Line Break Generation and Detection
• Protocol ISO7816 T=0 and T=1
• Modem, Handshaking (Hardware and Software) and RS485 signals
• Infrared Data Association (IrDA) 115.2 kbps
• Test modes for debugging

- Automatic echo, local loopback and remote loopback
• Odd, even, mark, space or no parity bit
• 1, 1.5 or 2 stop bits

- Also provide support for a time guard up to 255 bit periods long

1 Introduction
The AVR®32 microcontroller has independent USARTs. These are widely
configurable, and can be set to operate in several different modes. This application
note describes these modes and provides the drivers to communicate with the
USART.

32-bit
Microcontrollers

Application Note

Rev. 32006A-AVR-04/06

2 AVR32100
32006A-AVR-04/06

2 Operation

2.1 Operation mode overview
When the USART is initialized several parameters are passed, one of which select
the operation mode of the USART. The USART supports the RS232, RS485, modem
and ISO7816 (T=0 and T=1) protocols, along with software and hardware
handshaking, and IrDA.

2.1.1 Normal mode (RS232)

Most devices using serial communication support the RS232 protocol. Two devices
are connected using a separate wire for transmit and receive in order to achieve full
duplex communication. Usually a ground wire is included for a total of three wires.
The characters transmitted may be from 5 to 9 bits, and are wrapped with a start bit
and at least one stop bit. An additional parity bit may also be included to form the
packet transmitted.

2.1.2 Handshaking

There are two available types of handshaking; software and hardware. In the software
mode two reserved characters are sent from the receiver to the transmitter, one
signalizing that the receivers buffers are full, causing the transmitter to stop
transmitting. The other tells the transmitter to resume the transmission. Hardware
handshaking require extra wiring. One wire is used to make a Request To Send
(RTS), another to signal Clear To Send (CTS). Whenever a character is to be
transmitted the source will set its RTS high, when the CTS is received from the target,
the character is transmitted.

2.1.3 Multidrop mode (RS485)

The main difference between RS485 and RS232, is the ability to connect several
devices on the same wires, forming a serial bus. When in RS485 mode the USART is
able to tristate (disconnect) it’s output, thus granting some other device the usage of
the bus. In most configurations all but one of the devices on the bus, are slaves. The
master will address the other devices using a special address character. If a reply is
anticipated, release the bus for some time.

2.1.4 ISO7816 protocol

The ISO7816 is a half-duplex protocol for communication with smart cards. The
USART must be configured to provide a clock signal to the smart card (enable clock
output). Since only one wire is used for communication, the USART can not enable
both the transmitter and the receiver simultaneously. After initialization, both are
disabled. In order to transmit, usart_send_enable() should be called. To receive data,
usart_send_disable() must be run. The ISO7816 protocol is subdivided into two
modes; T=0 and T=1. In the T=1 mode, the USART will communicate like in normal
mode, but only half-duplex. The T=0 mode provide some additional features. In this
mode the receiver will send a NACK, Non Acknowledge, bit to report error in the
transmission. The max_it field gives the maximum number of re-sends the transmitter
will perform before giving up. On the receiver side, this field gives the maximum
number of NACKs to send for each character. When the maximum number of
repetitions has been reached on either side, a flag is asserted (see

 AVR32100

 3

32006A-AVR-04/06

usart_max_it_reached()). To avoid repetitive transmission, the inack bit should be set
in the receiver.

2.1.5 IrDA protocol

The USART supports half-duplex wireless communication by providing an IrDA mode.
This mode complies with IrDA specification version 1.1, and supports data rates from
2.4 kbps to 115.2 kbps. When transmitting, the RZI modulation scheme is used.
Logical “0” is transmitted by emitting light for 3/16 of a bit period, while logical “1” is
represented by no emission for a bit period. On the receiving end received light will
cause RXD to drop low, a demodulator will use a counter to separate 1 from 0.
Whenever a falling edge is detected on the RXD pin, the value set by IrDA_filter in
the options struct is loaded into a counter. This counter decreases with one at every
cycle of the master clock. If no rising edge has been detected by the time the counter
reaches 0, the input is read as logical “0”. However, if a rising edge is detected, the
counter is reloaded, and the signal read as logical “1”. (For IrDA reception the filter
value in the options struct will have to be set).

2.1.6 Modem protocol

When set to the modem mode, the USART enables additional inputs and outputs.
The USART behaves as a Data Terminal Equipment, DTE, as it drives DTR and RTS
and can detect change on DSR, DCD, CTS and RI. Special modem mode functions
are included for this.

3 Initialization
Before using the USART it has to be initialized. This is accomplished by running the
appropriate initialization function. These function sets up the USART according to the
arguments given to them. If some of the arguments do not correspond to a valid
operational mode, an error will be returned. In this case no initialization will be
performed, and the USART should not be expected to work at any level. Reinitializing
the USART will erase any previous initialization data, and completely reset the
USART. As a result, all needed parameters must be passed on every reset. If a
parameter must be changed, a complete re-initialization should be performed.
Different initialization functions are available for each of the different operation modes
available for the USART.

3.1.1 Mode options

When initializing the USART to operate in i.e RS232 mode (and most of the other
asynchronous modes) a usart_options_t struct has to be passed. This struct
contains settings that control the communication. All the members of the struct must
be set to a suitable value before passing it to an initialization function or an error will
be returned, and the USART will not work as expected.

Please note that this struct is used for every usart mode, except the ISO7816 mode,
which has its own initialization different from the other modes.

Calling an initialization function for either one of the modes available in the USART
module will initialize the appropriate USART. The initialization function will return 0
upon success.

Each USART is uniquely initialized and can only support one mode at any given time.
If a mode change is required, the previous mode will no longer be supported by the
USART.

4 AVR32100
32006A-AVR-04/06

4 Functions
All the functions available in the driver are standalone functions. In many situations
these functions may be implemented in another fashion to improve performance. This
could incorporate interrupts, performance counters and timers.

To use an USART in any mode, the correct mode must first be initialized. If an
USART is initialized, only functions associated with that mode should be used. In
most cases the functions themselves can be called from any state or function in an
application. There are a few functions that require a specific function to be called in
advance. This is clearly stated for these functions.

4.1 I/O functions
The USART have several functions, which can operate independently on each of the
USARTs. Calling these functions is not depending on the function or state of a certain
program. This means that i.e. an interrupt can be set to trigger reading of an USART.
All diagrams are therefore indifferent to the current running function or state. These
functions are used in all 5 of the different modes in each of the USART instances
available.

4.1.1 Read and write

After one or more USARTs have been initialized, functions for transmitting and
receiving data are needed. Reception of messages can be either setup as interrupts
or by polling the transmit buffer. Writing or reading a character from the usart consists
of calling the appropriate function, either usart_read_char or usart_write_char.

4.1.2 Break

A break state can be entered by calling usart_start_break() and no transmission
on the USART can be made. To unlock the break state, the function
usart_stop_break() must be called. To test whether the USART is in the break
state or not, the function usart_test_brk() can be called. This function will return
either true or false depending on the current state of the specified USART. All these
functions take an USART base address as an argument.

4.2 Timeout handling
All USARTs have support for timeout handling. There are 3 timeout functions
available for each USART:

• usart_start_timeout_now(usart_t usart, int timeout)

o This function will start a timeout immediately.

• usart_start_timeout_after_transfer(usart_t usart, int timeout)

o Timeout will start automatically after the next reception of a character
of the actual USART.

• usart_has_timed_out(usart_t usart)

o Returns true or false.

 AVR32100

 5

32006A-AVR-04/06

4.3 Error status functions
There are 4 error functions available for each USART:

• usart_parity_error(usart_t usart)

• usart_framing_error(usart_t usart)

• usart_overrun_error(usart_t usart)

• usart_reset_status(usart_t usart)
The three first functions will return true or false if an error of the given type has
occurred since the last reset of the actual USART. The function
usart_reset_status() will clear all errors of the given USART that has occurred
since the last reset of the USART.

4.4 Addressing functions (multidrop mode)
If using rs485, each node must have an address associated with the actual node. To
set up this address, the function usart_send_address() is used. This address takes
the USART base address and the address of the node as arguments. To successfully
set an address, the function usart_init_rs485() must be called first. See chapter 3
for more details.

Figure 1. usart_send_address()

usart_init_rs485

usart_send_address

Do something
useful

usart, options

status

usart, address

status

6 AVR32100
32006A-AVR-04/06

4.5 ISO7816 mode functions
A series of functions are specified for the ISO7815 mode. All these functions require
the base address for the actual USART to function appropriately. These functions can
furthermore be connected independently of each other to suit specific implementation
needs.

4.5.1 Error functions

• usart_number_of_errors(usart_t usart)
o returns the number of transfer errors. The counter overflows at 255

and is reset upon each read access.
• usart_max_iterations_reached(usart_t usart)

o Returns true if the maximum number of resends (iterations) have
been reached.

• usart_reset_iteration_counter(usart_t usart)
o Resets the iteration bit described above.

• usart_reset_nack(usart_t usart)
o Resets the nack bit for the USART.

Please note that the function usart_number_of_errors() utilizes hardware to keep
track of the number of errors that might have occurred. Due to the fact that this
counter overflows at 255 errors, design considerations should be made to ensure that
the counter does not overflow and hides possible overflows.

4.5.2 Transmission functions

• usart_send_enable(usart_t usart)
o Enables transmissions and disables receiver

• usart_send_disable(usart_t usart)
o Enables the receiver, disables the transmitter

4.6 Modem mode functions
For modem communication a series of function are available. The functions are
flexible and can be used in any order necessary to satisfy implementation
specifications.

• usart_modem_pins()
o Returns the bitfield for all changes to the modem i/o pins.

• usart_set_dtr()
o Change data terminal ready. Takes the new pin_value as an

argument.
• usart_set_rts()

o This function controls the request to send output. The new value is
sent as an argument to the function.

 AVR32100

 7

32006A-AVR-04/06

5 Package information
Included with the application note is a driver package. This package contains drivers,
example code and documentation.

5.1 Drivers
Drivers are available in the package. These drivers are written to be independent of a
specific compiler and are successfully tested on gcc and IAR Embedded Workbench.

5.2 Examples
Examples are available from the corresponding driver package. All functionality is
divided into libraries and an example that utilizes the library.

5.3 Documentation
Function specific documentation is available in the package. Refer to readme.html in
the source code directory.

32006A-AVR-04/06

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, and AVR Studio® are
the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Operation
	2.1 Operation mode overview
	2.1.1 Normal mode (RS232)
	2.1.2 Handshaking
	2.1.4 ISO7816 protocol
	2.1.5 IrDA protocol

	3 Initialization
	3.1.1 Mode options

	4 Functions
	4.1 I/O functions
	4.1.1 Read and write
	4.1.2 Break

	4.2 Timeout handling
	4.3 Error status functions
	4.4 Addressing functions (multidrop mode)
	4.5 ISO7816 mode functions
	4.5.1 Error functions
	4.5.2 Transmission functions

	4.6 Modem mode functions

	5 Package information
	5.1 Drivers
	5.2 Examples
	5.3 Documentation

